Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
نویسندگان
چکیده
Nanoparticles larger than the reported mesh-pore size range (10-200 nm) in mucus have been thought to be much too large to undergo rapid diffusional transport through mucus barriers. However, large nanoparticles are preferred for higher drug encapsulation efficiency and the ability to provide sustained delivery of a wider array of drugs. We used high-speed multiple-particle tracking to quantify transport rates of individual polymeric particles of various sizes and surface chemistries in samples of fresh human cervicovaginal mucus. Both the mucin concentration and viscoelastic properties of these cervicovaginal samples are similar to those in many other human mucus secretions. Unexpectedly, we found that large nanoparticles, 500 and 200 nm in diameter, if coated with polyethylene glycol, diffused through mucus with an effective diffusion coefficient (D(eff)) only 4- and 6-fold lower than that for the same particles in water (at time scale tau = 1 s). In contrast, for smaller but otherwise identical 100-nm coated particles, D(eff) was 200-fold lower in mucus than in water. For uncoated particles 100-500 nm in diameter, D(eff) was 2,400- to 40,000-fold lower in mucus than in water. Much larger fractions of the 100-nm particles were immobilized or otherwise hindered by mucus than the large 200- to 500-nm particles. Thus, in contrast to the prevailing belief, these results demonstrate that large nanoparticles, if properly coated, can rapidly penetrate physiological human mucus, and they offer the prospect that large nanoparticles can be used for mucosal drug delivery.
منابع مشابه
Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.
Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as...
متن کاملBiodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus.
Mucus is a highly viscoelastic and adhesive substance that protects against infection and injury at nearly all entry points to the body not covered by skin. However, mucus also traps potentially life-saving drugs and nucleic acids delivered by synthetic nanoparticles, including those composed of poly(lactic-co-glycolic acid) (PLGA) and poly(e-caprolactone) (PCL), two FDA-approved polymers commo...
متن کاملNanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer
Cigarette smoke is a complex mixture of smoke constituents, often characterised by size-resolved particle distributions. Since descriptions of ultrafine particles <50 nm are absent, our aim was to explore the existence of these nanoparticles in fresh and undiluted cigarette smoke. We measured undiluted smoke particles real-time by a scanning mobility particle sizer with Faraday cup electrometer...
متن کاملRecent advances on nano delivery of Helix mucus pharmacologically active components
Bioactive products from snail slime of “Helix” specie have potential applications in preventing and/or treating several human diseases and in cancer diagnosis. However, the poor pharmacokinetics characteristics of these natural compounds limit their use. Nanotechnology offers promising solutions for the enhanced formulation of these molecules through the synthesis of nanosized drug del...
متن کاملPretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus
Mucosal drug delivery nanotechnologies are limited by the mucus barrier that protects nearly all epithelial surfaces not covered with skin. Most polymeric nanoparticles, including polystyrene nanoparticles (PS), strongly adhere to mucus, thereby limiting penetration and facilitating rapid clearance from the body. Here, we demonstrate that PS rapidly penetrate human cervicovaginal mucus (CVM), i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 5 شماره
صفحات -
تاریخ انتشار 2007